• This is an assessment test.
  • These tests focus on the basics of Maths and are meant to indicate your preparation level for the subject.
  • Kindly take the tests in this series with a pre-defined schedule.

Basic Maths: Test 32

Congratulations - you have completed Basic Maths: Test 32.

You scored %%SCORE%% out of %%TOTAL%%.

Your performance has been rated as %%RATING%%


Your answers are highlighted below.
Question 1
$\left( 7.5\times 7.5-37.5+2.5\times 2.5 \right)$ is equal to:
A
15
B
5
C
25
D
35
Question 1 Explanation:
$\begin{align} & \left( 7.5\times 7.5-37.5+2.5\times 2.5 \right) \\ & =\left[ {{\left( 7.5 \right)}^{2}}-2\times 7.5\times 2.5+{{\left( 2.5 \right)}^{2}} \right] \\ & ={{\left( 7.5-2.5 \right)}^{2}}={{\left( 5 \right)}^{2}}=25 \\ \end{align}$
Question 2
$\left( \sqrt{192}-\sqrt{147} \right)\div \sqrt{24}$ is equal to:
A
$\sqrt{6}$
B
$\sqrt{3}/2$
C
$\sqrt{2}/4$
D
$\sqrt{6}/2$
Question 2 Explanation:
$\begin{align} & \left( \sqrt{192}-\sqrt{147} \right)\div \sqrt{24} \\ & =\frac{\sqrt{192}-\sqrt{147}}{\sqrt{24}} \\ & =\frac{8\sqrt{3}-7\sqrt{3}}{2\sqrt{6}}=\frac{\sqrt{3}}{2\sqrt{2}\sqrt{3}}=\frac{1}{2\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ & =\frac{\sqrt{2}}{4} \\ \end{align}$
Question 3
The value of
\[\frac{\sqrt{63}-\sqrt{99}}{\sqrt{28}-\sqrt{44}}\]is:
A
$\frac{3}{4}$
B
$\frac{2}{3}$
C
$1\frac{1}{2}$
D
$1\frac{2}{3}$
Question 3 Explanation:
$\begin{align} & \frac{\sqrt{63}-\sqrt{99}}{\sqrt{28}-\sqrt{44}} \\ & =\frac{\sqrt{9\times 7}-\sqrt{9\times 11}}{\sqrt{4\times 7}-\sqrt{4\times 11}} \\ & =\frac{3\sqrt{7}-3\sqrt{11}}{2\sqrt{7}-2\sqrt{11}}=\frac{3\left( \sqrt{7}-\sqrt{11} \right)}{2\left( \sqrt{7}-\sqrt{11} \right)} \\ & =\frac{3}{2}=1\frac{1}{2} \\ \end{align}$
Question 4
$\sqrt{12+\sqrt{12+\sqrt{12+.......}}}$is equal to:
A
6⅔
B
3
C
$3\frac{1}{2}$
D
4
Question 4 Explanation:
$\begin{align} & Let\,\,x\,=\,\sqrt{12+\sqrt{12+\sqrt{12+.......}}} \\ & or,\,x=\sqrt{12+x} \\ & or,\,{{x}^{2}}=12+x \\ & or,\,{{x}^{2}}-x-12=0 \\ & or,\,{{x}^{2}}-4x+3x-12=0 \\ & or\,x\left( x-4 \right)+3\left( x-4 \right)=0 \\ & or,\,\left( x+3 \right)\,\left( x-4 \right)=0 \\ & Therefore\,\,x=-3\,\,or\,x=4 \\ \end{align}$
But the given expression is positive Hence, $x\ne -3$
Question 5
$\left( 1.5\times 1.5+16.5+5.5\times 5.5 \right)$ is equal to:
A
99
B
49
C
100
D
36
Question 5 Explanation:
$\begin{align} & ?=\left( 1.5\times 1.5+16.5+5.5\times 5.5 \right) \\ & =\left[ {{\left( 1.5 \right)}^{2}}+2\times 1.5\times 5.5+{{\left( 5.5 \right)}^{2}} \right] \\ & ={{\left[ 1.5+5.5 \right]}^{2}}={{\left( 7 \right)}^{2}}=49 \\ \end{align}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 5 questions to complete.
List
Return
Shaded items are complete.
12345
End
Return